 Лабораторная работа 4
Необходимо реализовать архитектуры Generator и Discriminator.
Реализовать цикл обучения:
· обучать дискриминатор на реальных и фейковых данных
· обучать генератор так, чтобы “обманывать” дискриминатор
Каждую N-ю эпоху сохранять сетку сгенерированных изображений.
После обучения:
· сгенерировать изображения
· сохранить их в папку generated/
Попробовать улучшения:
· изменить размер шума z_dim
· увеличить эпохи
· добавить BatchNorm в генератор
· поменять архитектуру на DCGAN (с Conv слоями)
Пример листинга кода на Keras
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt

Настройки

z_dim = 100
batch_size = 128
epochs = 20
lr = 2e-4
sample_dir = "samples"
gen_dir = "generated"
os.makedirs(sample_dir, exist_ok=True)
os.makedirs(gen_dir, exist_ok=True)

1) Загрузка MNIST из Keras + обработка данных

(x_train, _), (_, _) = keras.datasets.mnist.load_data()
x_train: (60000, 28, 28) uint8 [0..255]
приводим к float32 и нормализуем в [-1, 1]
x_train = x_train.astype("float32")
x_train = (x_train / 127.5) - 1.0 # [0..255] -> [-1..1]
x_train = np.expand_dims(x_train, axis=-1) # (60000, 28, 28, 1)
dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(60000).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE)

2) Модели: Generator и Discriminator (MLP-версия)

def build_generator(z_dim: int) -> keras.Model:
 model = keras.Sequential([
 layers.Input(shape=(z_dim,)),
 layers.Dense(256),
 layers.ReLU(),
 layers.Dense(512),
 layers.ReLU(),
 layers.Dense(1024),
 layers.ReLU(),
 layers.Dense(28 * 28, activation="tanh"),
 layers.Reshape((28, 28, 1))
], name="Generator")
 return model

def build_discriminator() -> keras.Model:
 model = keras.Sequential([
 layers.Input(shape=(28, 28, 1)),
 layers.Flatten(),
 layers.Dense(512),
 layers.LeakyReLU(0.2),
 layers.Dense(256),
 layers.LeakyReLU(0.2),
 layers.Dense(1, activation="sigmoid")
], name="Discriminator")
 return model
G = build_generator(z_dim)
D = build_discriminator()

3) Лоссы и оптимизаторы

bce = keras.losses.BinaryCrossentropy(from_logits=False)
opt_G = keras.optimizers.Adam(learning_rate=lr, beta_1=0.5, beta_2=0.999)
opt_D = keras.optimizers.Adam(learning_rate=lr, beta_1=0.5, beta_2=0.999)
Фиксированный шум для визуализации прогресса
fixed_z = tf.random.normal([64, z_dim])

Утилита: сохранение сетки изображений

def save_image_grid(images, path, nrow=8):
 """
 images: (N, 28, 28, 1) в диапазоне [-1, 1]
 """
 images = (images + 1.0) / 2.0 # -> [0, 1]
 images = tf.clip_by_value(images, 0.0, 1.0).numpy()
 N = images.shape[0]
 ncol = int(np.ceil(N / nrow))
 fig = plt.figure(figsize=(nrow, ncol))
 for i in range(N):
 ax = plt.subplot(ncol, nrow, i + 1)
 ax.imshow(images[i, :, :, 0], cmap="gray")
 ax.axis("off")
 plt.tight_layout()
 plt.savefig(path, dpi=150)
 plt.close(fig)

4) Шаг обучения (tf.function для ускорения)

@tf.function
def train_step(real_images):
 b = tf.shape(real_images)[0]
 # Метки
 y_real = tf.ones((b, 1))
 y_fake = tf.zeros((b, 1))
 # -------------------
 # Обучение Discriminator
 # -------------------
 z = tf.random.normal((b, z_dim))
 with tf.GradientTape() as tape_D:
 fake_images = G(z, training=True)
 D_real = D(real_images, training=True)
 D_fake = D(fake_images, training=True)
 loss_D_real = bce(y_real, D_real)
 loss_D_fake = bce(y_fake, D_fake)
 loss_D = (loss_D_real + loss_D_fake) / 2.0
 grads_D = tape_D.gradient(loss_D, D.trainable_variables)
 opt_D.apply_gradients(zip(grads_D, D.trainable_variables))
 # -------------------
 # Обучение Generator
 # -------------------
 z = tf.random.normal((b, z_dim))
 with tf.GradientTape() as tape_G:
 fake_images = G(z, training=True)
 D_fake_for_G = D(fake_images, training=True)
 # Generator хочет, чтобы D предсказывал "real"
 loss_G = bce(y_real, D_fake_for_G)

 grads_G = tape_G.gradient(loss_G, G.trainable_variables)
 opt_G.apply_gradients(zip(grads_G, G.trainable_variables))

 return loss_D, loss_G

5) Цикл обучения

for epoch in range(1, epochs + 1):
 d_losses = []
 g_losses = []
 for real_batch in dataset:
 loss_D, loss_G = train_step(real_batch)
 d_losses.append(loss_D.numpy())
 g_losses.append(loss_G.numpy())
 # Сохраняем картинку прогресса
 samples = G(fixed_z, training=False)
 save_image_grid(samples, f"{sample_dir}/epoch_{epoch:03d}.png", nrow=8)

 print(f"Epoch [{epoch}/{epochs}] | loss_D: {np.mean(d_losses):.4f} | loss_G: {np.mean(g_losses):.4f}")
print("Готово! Примеры по эпохам в папке:", sample_dir)

6) Генерация изображений

total = 1000
idx = 0
G.trainable = False

while idx < total:
 cur = min(batch_size, total - idx)
 z = tf.random.normal((cur, z_dim))
 imgs = G(z, training=False) # [-1, 1]
 imgs = (imgs + 1.0) / 2.0 # -> [0, 1]
 imgs = tf.clip_by_value(imgs, 0.0, 1.0).numpy()

 for i in range(cur):
 plt.imsave(f"{gen_dir}/{idx:05d}.png", imgs[i, :, :, 0], cmap="gray", vmin=0.0, vmax=1.0)
 idx += 1
print("Сгенерировано изображений:", len(os.listdir(gen_dir)))
print("Папка:", gen_dir)
